skip to main content


Search for: All records

Creators/Authors contains: "McKenzie, K. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Several tectonic processes combine to produce the crustal deformation observed across the Cascadia margin: (1) Cascadia subduction, (2) the northward propagation of the Mendocino Triple Junction (MTJ), (3) the translation of the Sierra Nevada–Great Valley (SNGV) block along the Eastern California Shear Zone–Walker Lane and, (3) extension in the northwestern Basin and Range, east of the Cascade Arc. The superposition of deformation associated with these processes produces the present-day GPS velocity field. North of ~ 45° N observed crustal displacements are consistent with inter-seismic subduction coupling. South of ~ 45° N, NNW-directed crustal shortening produced by the Mendocino crustal conveyor (MCC) and deformation associated with SNGV-block motion overprint the NE-directed Cascadia subduction coupling signal. Embedded in this overall pattern of crustal deformation is the rigid translation of the Klamath terrane, bounded on its north and west by localized zones of deformation. Since the MCC and SNGV processes migrate northward, their impact on the crustal deformation in southern Cascadia is a relatively recent phenomenon, since ~ 2 –3 Ma. 
    more » « less
  2. Abstract

    The details of subduction zone locking place constraints on the characteristics of megathrust events. Due to the lack of significant present‐day seismicity along the Cascadia subduction interface, geodetic data are used to assess subduction locking along the margin. We isolate the subduction signal from other tectonic signals within the Cascadia GPS field, to assess the details of plate‐interface locking. Apparent coupling determined by a simple homogenous elastic half‐space inversion cannot everywhere reproduce the subduction component of the GPS field. Consequently, we explore the relationships among upper‐plate strength, locking depth and the resulting surface velocity signal using 2D finite element models. When the upper plate is composed of a weak material, trenchward of a strong backstop, we find that the down‐dip limit of locking relative to the location of the weak‐to‐strong transition controls how upper‐plate deformation is spatially distributed. If locking extends into the stronger material, as observed in central Cascadia, the surface velocity field propagates farther inland than expected from a simple homogeneous elastic model. In contrast, in southern Cascadia, because locking terminates within the weak accretionary margin, upper‐plate shortening is localized within the weaker material, particularly in the region between the end of locking and the strong Klamath terrane. This behavior provides a possible mechanism for producing the high (geodetic and permanent) uplift rates, plate‐motion‐parallel shortening, and crustal exhumation observed in many active and fossil subduction zones.

     
    more » « less
  3. Abstract

    Subduction zones host some of Earth's most damaging natural hazards, including megathrust earthquakes and earthquake‐induced tsunamis. A major control on the initiation and rupture characteristics of subduction megathrust earthquakes is how the coupled zone along the subduction interface accumulates elastic strain between events. We present results from observations of slow slip events (SSEs) in Cascadia occurring during the interseismic period downdip of the fully coupled zone, which imply that the orientation of strain accumulation within the coupled zone can vary with depth. Interseismic GPS motions suggest that forces derived from relative plate motions across a shallow, offshore locked plate interface dominate over decadal timescales. Deeper on the plate interface, below the locked (seismogenic) patch, slip during SSEs dominantly occurs in the updip direction, reflecting a dip‐parallel force acting on the slab, such as slab pull. This implies that in subduction zones with obliquely convergent plate motions, the seismogenic zone of the megathrust is loaded by forces acting in two discrete directions, leading to a depth‐varying orientation of strain accumulation on the plate interface.

     
    more » « less